Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
J Med Virol ; 95(6): e28861, 2023 06.
Article in English | MEDLINE | ID: covidwho-20245033

ABSTRACT

The seasonal human coronaviruses (HCoVs) have zoonotic origins, repeated infections, and global transmission. The objectives of this study are to elaborate the epidemiological and evolutionary characteristics of HCoVs from patients with acute respiratory illness. We conducted a multicenter surveillance at 36 sentinel hospitals of Beijing Metropolis, China, during 2016-2019. Patients with influenza-like illness (ILI) and severe acute respiratory infection (SARI) were included, and submitted respiratory samples for screening HCoVs by multiplex real-time reverse transcription-polymerase chain reaction assays. All the positive samples were used for metatranscriptomic sequencing to get whole genomes of HCoVs for genetical and evolutionary analyses. Totally, 321 of 15 677 patients with ILI or SARI were found to be positive for HCoVs, with an infection rate of 2.0% (95% confidence interval, 1.8%-2.3%). HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 infections accounted for 18.7%, 38.3%, 40.5%, and 2.5%, respectively. In comparison to ILI cases, SARI cases were significantly older, more likely caused by HCoV-229E and HCoV-OC43, and more often co-infected with other respiratory pathogens. A total of 179 full genome sequences of HCoVs were obtained from 321 positive patients. The phylogenetical analyses revealed that HCoV-229E, HCoV-NL63 and HCoV-OC43 continuously yielded novel lineages, respectively. The nonsynonymous to synonymous ratio of all key genes in each HCoV was less than one, indicating that all four HCoVs were under negative selection pressure. Multiple substitution modes were observed in spike glycoprotein among the four HCoVs. Our findings highlight the importance of enhancing surveillance on HCoVs, and imply that more variants might occur in the future.


Subject(s)
Coronavirus 229E, Human , Coronavirus NL63, Human , Coronavirus OC43, Human , Humans , Seasons , Betacoronavirus , China , Coronavirus OC43, Human/genetics
2.
Sci Rep ; 13(1): 8416, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20238068

ABSTRACT

The prevalence of seasonal human coronavirus (HCoV) infections in early childhood and adults has not been well analyzed in longitudinal serological studies. Here we analyzed the changes in HCoV (229E, HKU1, NL63, OC43, MERS, and SARS-CoV-2) spike-specific antibody levels in follow-up serum specimens of 140 children at the age of 1, 2, and 3 years, and of 113 healthcare workers vaccinated for Covid-19 with BNT162b2-vaccine. IgG antibody levels against six recombinant HCoV spike subunit 1 (S1) proteins were measured by enzyme immunoassay. We show that by the age of three years the cumulative seropositivity for seasonal HCoVs increased to 38-81% depending on virus type. BNT162b2 vaccinations increased anti-SARS-CoV-2 S1 antibodies, but no increase in seasonal coronavirus antibodies associated with vaccinations. In healthcare workers (HCWs), during a 1-year follow-up, diagnostic antibody rises were seen in 5, 4 and 14% of the cases against 229E, NL63 and OC43 viruses, respectively, correlating well with the circulating HCoVs. In 6% of the HCWs, a diagnostic antibody rise was seen against S1 of HKU1, however, these rises coincided with anti-OC43 S1 antibody rises. Rabbit and guinea pig immune sera against HCoV S1 proteins indicated immunological cross-reactivity within alpha-CoV (229E and NL63) and beta-CoV (HKU1 and OC43) genera.


Subject(s)
Blood Group Antigens , COVID-19 , Coronavirus 229E, Human , Adult , Child , Humans , Child, Preschool , Infant , Animals , Guinea Pigs , Rabbits , Reinfection , BNT162 Vaccine , Spike Glycoprotein, Coronavirus , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Health Personnel
3.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: covidwho-20236463

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, addressed the lack of specific antiviral drugs against coronaviruses. In this study, bioguided fractionation performed on both ethyl acetate and aqueous sub-extracts of Juncus acutus stems led to identifying luteolin as a highly active antiviral molecule against human coronavirus HCoV-229E. The apolar sub-extract (CH2Cl2) containing phenanthrene derivatives did not show antiviral activity against this coronavirus. Infection tests on Huh-7 cells, expressing or not the cellular protease TMPRSS2, using luciferase reporter virus HCoV-229E-Luc showed that luteolin exhibited a dose-dependent inhibition of infection. Respective IC50 values of 1.77 µM and 1.95 µM were determined. Under its glycosylated form (luteolin-7-O-glucoside), luteolin was inactive against HCoV-229E. Time of addition assay showed that utmost anti-HCoV-229E activity of luteolin was achieved when added at the post-inoculation step, indicating that luteolin acts as an inhibitor of the replication step of HCoV-229E. Unfortunately, no obvious antiviral activity for luteolin was found against SARS-CoV-2 and MERS-CoV in this study. In conclusion, luteolin isolated from Juncus acutus is a new inhibitor of alphacoronavirus HCoV-229E.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , SARS-CoV-2 , Pandemics , Luteolin/pharmacology , Antiviral Agents/pharmacology
4.
Sci Rep ; 13(1): 8886, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-20232903

ABSTRACT

An investigation of the deactivation of pathogens using electromagnetic waves in the microwave region of the spectrum is achieved using custom-built waveguide structures. The waveguides feature sub-wavelength gratings to allow the integration of an air cooling system without disturbing the internal propagating fields. The waveguides are tapered to accommodate an experimental sample internally with sufficient surrounding airflow. The proposed methodology allows for precise control over power densities due to the well-defined fundamental mode excited in each waveguide, in addition to temperature control of the sample due to microwave exposure over time. Human coronavirus (HCoV-229E) is investigated over the 0-40 GHz range, where a peak 3-log viral reduction is observed in the 15.0-19.5 GHz sub-band. We conclude HCoV-229E has an intrinsic resonance in this range, where nonthermal structure damage is optimal through the structure-resonant energy transfer effect.


Subject(s)
Coronavirus 229E, Human , Coronavirus Infections , Humans , Coronavirus 229E, Human/physiology , Electromagnetic Phenomena , Spectrum Analysis
5.
Microbiol Spectr ; 11(3): e0348322, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2324658

ABSTRACT

Bats are the reservoir for numerous human pathogens, including coronaviruses. Despite many coronaviruses having descended from bat ancestors, little is known about virus-host interactions and broader evolutionary history involving bats. Studies have largely focused on the zoonotic potential of coronaviruses with few infection experiments conducted in bat cells. To determine genetic changes derived from replication in bat cells and possibly identify potential novel evolutionary pathways for zoonotic virus emergence, we serially passaged six human 229E isolates in a newly established Rhinolophus lepidus (horseshoe bat) kidney cell line. Here, we observed extensive deletions within the spike and open reading frame 4 (ORF4) genes of five 229E viruses after passaging in bat cells. As a result, spike protein expression and infectivity of human cells was lost in 5 of 6 viruses, but the capability to infect bat cells was maintained. Only viruses that expressed the spike protein could be neutralized by 229E spike-specific antibodies in human cells, whereas there was no neutralizing effect on viruses that did not express the spike protein inoculated on bat cells. However, one isolate acquired an early stop codon, abrogating spike expression but maintaining infection in bat cells. After passaging this isolate in human cells, spike expression was restored due to acquisition of nucleotide insertions among virus subpopulations. Spike-independent infection of human coronavirus 229E may provide an alternative mechanism for viral maintenance in bats that does not rely on the compatibility of viral surface proteins and known cellular entry receptors. IMPORTANCE Many viruses, including coronaviruses, originated from bats. Yet, we know little about how these viruses switch between hosts and enter human populations. Coronaviruses have succeeded in establishing in humans at least five times, including endemic coronaviruses and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In an approach to identify requirements for host switches, we established a bat cell line and adapted human coronavirus 229E viruses by serial passage. The resulting viruses lost their spike protein but maintained the ability to infect bat cells, but not human cells. Maintenance of 229E viruses in bat cells appears to be independent of a canonical spike receptor match, which in turn might facilitate cross-species transmission in bats.


Subject(s)
COVID-19 , Chiroptera , Coronavirus 229E, Human , Animals , Humans , Phylogeny , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism
6.
Front Immunol ; 14: 930086, 2023.
Article in English | MEDLINE | ID: covidwho-2322865

ABSTRACT

Interferon regulatory factors (IRFs) are key elements of antiviral innate responses that regulate the transcription of interferons (IFNs) and IFN-stimulated genes (ISGs). While the sensitivity of human coronaviruses to IFNs has been characterized, antiviral roles of IRFs during human coronavirus infection are not fully understood. Type I or II IFN treatment protected MRC5 cells from human coronavirus 229E infection, but not OC43. Cells infected with 229E or OC43 upregulated ISGs, indicating that antiviral transcription is not suppressed. Antiviral IRFs, IRF1, IRF3 and IRF7, were activated in cells infected with 229E, OC43 or severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2). RNAi knockdown and overexpression of IRFs demonstrated that IRF1 and IRF3 have antiviral properties against OC43, while IRF3 and IRF7 are effective in restricting 229E infection. IRF3 activation effectively promotes transcription of antiviral genes during OC43 or 229E infection. Our study suggests that IRFs may be effective antiviral regulators against human coronavirus infection.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Interferon Regulatory Factor-3 , SARS-CoV-2/metabolism , Interferons/metabolism , Antiviral Agents/pharmacology , Interferon Regulatory Factors
7.
Mol Ecol ; 32(14): 3989-4002, 2023 07.
Article in English | MEDLINE | ID: covidwho-2326110

ABSTRACT

Understanding the immunogenetic basis of coronavirus (CoV) susceptibility in major pathogen reservoirs, such as bats, is central to inferring their zoonotic potential. Members of the cryptic Hipposideros bat species complex differ in CoV susceptibility, but the underlying mechanisms remain unclear. The genes of the major histocompatibility complex (MHC) are the best understood genetic basis of pathogen resistance, and differences in MHC diversity are one possible reason for asymmetrical infection patterns among closely related species. Here, we aimed to link asymmetries in observed CoV (CoV-229E, CoV-2B and CoV-2Bbasal) susceptibility to immunogenetic differences amongst four Hipposideros bat species. From the 2072 bats assigned to their respective species using the mtDNA cytochrome b gene, members of the most numerous and ubiquitous species, Hipposideros caffer D, were most infected with CoV-229E and SARS-related CoV-2B. Using a subset of 569 bats, we determined that much of the existent allelic and functional (i.e. supertype) MHC DRB class II diversity originated from common ancestry. One MHC supertype shared amongst all species, ST12, was consistently linked to susceptibility with CoV-229E, which is closely related to the common cold agent HCoV-229E, and infected bats and those carrying ST12 had a lower body condition. The same MHC supertype was connected to resistance to CoV-2B, and bats with ST12 were less likely be co-infected with CoV-229E and CoV-2B. Our work suggests a role of immunogenetics in determining CoV susceptibility in bats. We advocate for the preservation of functional genetic and species diversity in reservoirs as a means of mitigating the risk of disease spillover.


Subject(s)
Chiroptera , Coronavirus 229E, Human , Coronavirus Infections , Coronavirus , Animals , Chiroptera/genetics , Genes, MHC Class II , Phylogeny , Coronavirus/genetics , Coronavirus 229E, Human/genetics , Histocompatibility Antigens Class II/genetics
8.
Front Immunol ; 13: 954093, 2022.
Article in English | MEDLINE | ID: covidwho-2312676

ABSTRACT

The SARS-CoV-2 belongs to the coronavirus family, which also includes common endemic coronaviruses (HCoVs). We hypothesized that immunity to HCoVs would be associated with stronger immunogenicity from SARS-CoV-2 vaccines. The study included samples from the COSRIP observational cohort study of adult paramedics in Canada. Participants provided blood samples, questionnaire data, and results of COVID-19 testing. Samples were tested for anti-spike IgG against SARS-CoV-2, HCoV-229E, HCoV-HKU1, HCoV-NL63, and HCoV-OC43 antigens. We first compared samples from vaccinated and unvaccinated participants, to determine which HCoV antibodies were affected by vaccination. We created scatter plots and performed correlation analysis to estimate the extent of the linear relationship between HCoVs and SARS-CoV-2 anti-spike antibodies. Further, using adjusted log-log multiple regression, we modeled the association between each strain of HCoV and SARS-CoV-2 antibodies. Of 1510 participants (mean age of 39 years), 94 (6.2%) had a history of COVID-19. There were significant differences between vaccinated and unvaccinated participant in anti-spike antibodies to HCoV-HKU1, and HCoV-OC43; however, levels for HCoV-229E and HCoV-NL63 were similar (suggesting that vaccination did not affect these baseline values). Among vaccinated individuals without prior COVID-19 infection, SARS-COV-2 anti-spike IgG demonstrated a weak positive relationship between both HCoV-229E (r = 0.11) and HCoV-NL63 (r = 0.12). From the adjusted log-log multiple regression model, higher HCoV-229E and HCoV-NL63 anti-spike IgG antibodies were associated with increased SARS-COV-2 anti-spike IgG antibodies. Vaccination appears to result in measurable increases in HCoV-HKU1, and HCoV-OC43 IgG levels. Anti-HCoV-229E and HCoV-NL63 antibodies were unaffected by vaccination, and higher levels were associated with significantly higher COVID-19 vaccine-induced SARS-COV-2 antibodies.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Coronavirus NL63, Human , Coronavirus OC43, Human , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Humans , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2 , Seasons , Vaccination
9.
ACS Appl Mater Interfaces ; 15(18): 22580-22589, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2299126

ABSTRACT

The current global pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has demonstrated the necessity to develop novel materials with antimicrobial and antiviral activities to prevent the infection. One significant route for the spread of diseases is by the transmission of the virus through contact with contaminated surfaces. Antiviral surface treatments can help to reduce or even avoid these hazards. In particular, the development of active-virucidal fabrics or paints represents a very important challenge with multiple applications in hospitals, public transports, or schools. Modern, cutting-edge methods for creating antiviral surface coatings use either materials with a metal base or sophisticated synthetic polymers. Even if these methods are effective, they will still face significant obstacles in terms of large-scale applicability. Here, we describe the preparation of fabrics and paints treated with a scaled-up novel nanostructured biohybrid material composed of very small crystalline phosphate copper(II) nanoparticles, synthesized based on a technology that employs the use of a small amount of biological agent for its formation at room temperature in aqueous media. We demonstrate the efficient inactivation of the human coronavirus 229E (HCoV-229E), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and non-enveloped human rhinovirus 14 (HRV-14) (>99.9%) using an inexpensive, ecologically friendly coating agent. The reactive oxygen species produced during the oxidation of water or the more intensive reaction with hydrogen peroxide are believed to be the cause of the antiviral mechanism of the nanostructured material. In contrast to the release of a specific antiviral drug, this process does not consume the surface coating and does not need regeneration. A 12-month aging research that revealed no decline in antiviral activity is proof that the coating is durable in ambient circumstances. Also, the coated fabric can be reused after different washing cycles, even at moderate to high temperatures.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Viruses , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/prevention & control
10.
Viruses ; 15(4)2023 04 15.
Article in English | MEDLINE | ID: covidwho-2291254

ABSTRACT

A limited number of effective therapies are currently available to treat human coronavirus SARS-CoV-2 and other human coronaviruses, which are responsible for nearly a third of global cases of the common cold. The possibility of new emerging coronaviruses demands powerful new antiviral strategies. Lactoferrin is a well-known protein that possesses anti-inflammatory and immunomodulatory activities, and it has previously shown antiviral activity against several viruses, including SARS-CoV-2. To increase this antiviral activity, here we present bovine liposomal lactoferrin. Liposomal encapsulation of the compound was proven to increase permeability, bioavailability, and time release. In the present work, we compare the antiviral activity of free and liposomal bovine lactoferrin against HCoV229E and SARS-CoV-2 in vitro and in human primary bronchial epithelial cells, and we demonstrated that the liposomal form exerts a more potent antiviral activity than its free form at non-cytotoxic doses.


Subject(s)
COVID-19 , Coronavirus 229E, Human , RNA Viruses , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2 , Lactoferrin/pharmacology , Liposomes
11.
Biochem Biophys Res Commun ; 657: 16-23, 2023 05 21.
Article in English | MEDLINE | ID: covidwho-2288999

ABSTRACT

PF-07321332 and PF-07304814, inhibitors against SARS-CoV-2 developed by Pfizer, exhibit broad-spectrum inhibitory activity against the main protease (Mpro) from various coronaviruses. Structures of PF-07321332 or PF-07304814 in complex with Mpros of various coronaviruses reveal their inhibitory mechanisms against different Mpros. However, the structural information on the lower pathogenic coronavirus Mpro with PF-07321332 or PF-07304814 is currently scarce, which hinders our comprehensive understanding of the inhibitory mechanisms of these two inhibitors. Meanwhile, given that some immunocompromised individuals are still affected by low pathogenic coronaviruses, we determined the structures of lower pathogenic coronavirus HCoV-229E Mpro with PF-07321332 and PF-07304814, respectively, and analyzed and defined in detail the structural basis for the inhibition of HCoV-229E Mpro by both inhibitors. Further, we compared the crystal structures of multiple coronavirus Mpro complexes with PF-07321332 or PF-07304814 to illustrate the differences in the interaction of Mpros, and found that the inhibition mechanism of lower pathogenic coronavirus Mpro was more similar to that of moderately pathogenic coronaviruses. Our structural studies provide new insights into drug development for low pathogenic coronavirus Mpro, and provide theoretical basis for further optimization of both inhibitors to contain potential future coronaviruses.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Coronavirus 229E, Human/physiology , SARS-CoV-2/metabolism , Peptide Hydrolases/metabolism
12.
Adv Exp Med Biol ; 1407: 133-151, 2023.
Article in English | MEDLINE | ID: covidwho-2286093

ABSTRACT

Seven coronaviruses have been identified that can infect humans, four of which usually cause mild symptoms, including HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1, three of which are lethal coronaviruses, named severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2. Pseudotyped virus is an important tool in the field of human coronavirus research because it is safe, easy to prepare, easy to detect, and highly modifiable. In addition to the application of pseudotyped viruses in the study of virus infection mechanism, vaccine, and candidate antiviral drug or antibody evaluation and screening, pseudotyped viruses can also be used as an important platform for further application in the prediction of immunogenicity and antigenicity after virus mutation, cross-species transmission prediction, screening, and preparation of vaccine strains with better broad spectrum and antigenicity. Meanwhile, as clinical trials of various types of vaccines and post-clinical studies are also being carried out one after another, the establishment of a high-throughput and fully automated detection platform based on SARS-CoV-2 pseudotyped virus to further reduce the cost of detection and manual intervention and improve the efficiency of large-scale detection is also a demand for the development of SARS-CoV-2 pseudotyped virus.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Middle East Respiratory Syndrome Coronavirus , Humans , Viral Pseudotyping , SARS-CoV-2/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Coronavirus 229E, Human/genetics
13.
Mol Pharm ; 20(4): 2276-2287, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2262380

ABSTRACT

To deal with the broad spectrum of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that threaten human health, it is essential to not only drugs develop that target viral proteins but also consider drugs that target host proteins/cellular processes to protect them from being hijacked for viral infection and replication. To this end, it has been reported that autophagy is deeply involved in coronavirus infection. In this study, we used airway organoids to screen a chemical library of autophagic modulators to identify compounds that could potentially be used to fight against infections by a broad range of coronaviruses. Among the 80 autophagy-related compounds tested, cycloheximide and thapsigargin reduced SARS-CoV-2 infection efficiency in a dose-dependent manner. Cycloheximide treatment reduced the infection efficiency of not only six SARS-CoV-2 variants but also human coronavirus (HCoV)-229E and HCoV-OC43. Cycloheximide treatment also reversed viral infection-induced innate immune responses. However, even low-dose (1 µM) cycloheximide treatment altered the expression profile of ribosomal RNAs; thus, side effects such as inhibition of protein synthesis in host cells must be considered. These results suggest that cycloheximide has broad-spectrum anti-coronavirus activity in vitro and warrants further investigation.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , SARS-CoV-2 , Cycloheximide/pharmacology , Autophagy
14.
Int J Infect Dis ; 131: 7-12, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2261958

ABSTRACT

OBJECTIVES: At the time when the COVID-19 pandemic was responsible for more than six million deaths worldwide, the antiquity of coronaviruses remains undefined. We investigated individuals buried during the 16th century in France for the direct and paleoserological diagnosis of the coronavirus. METHODS: The 2011-2012 excavation of Abbey Saint-Pierre in Baume-Les-Messieurs, France uncovered 12 skeletons of individuals from the 13th to the 18th century. The total proteins extracted from dental pulps were subjected to microbial paleoserology, targeting SARS-CoV-2, human-associated coronavirus (HCoV)-229E, and OC43 antigens and for coronavirus peptide research using metaproteomics, in parallel to negative controls. RESULTS: Three peptide sequences totaling 36 amino acids indicative of a coronavirus were retrieved from the dental pulp remains collected from two individuals buried circa 16th century, in whom paleoserology confirmed a specific immunological response against modern-day SARS-CoV-2 and HCoV-229E. CONCLUSION: We provide serological and proteomic evidence for a betacoronavirus with no modern correspondent, infecting populations in the 16th century, extending the antiquity of coronaviruses by more than three centuries. Historical, archaeozoological, and paleoproteomic data suggested close contacts between these two individuals and domestic swine, cattle, and poultry, suggesting an ancient zoonotic coronavirus. Coronaviruses have been undesirable companions of populations long before the ongoing coronavirus disease 2019 outbreak emerged.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Animals , Cattle , Swine , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Proteomics
15.
Viruses ; 15(3)2023 03 01.
Article in English | MEDLINE | ID: covidwho-2259771

ABSTRACT

It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules' antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules' activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.


Subject(s)
Coronavirus 229E, Human , Coronavirus OC43, Human , Animals , Humans , Spike Glycoprotein, Coronavirus/metabolism , Enoxaparin , Molecular Docking Simulation , Heparitin Sulfate/metabolism
16.
Front Cell Infect Microbiol ; 12: 1081370, 2022.
Article in English | MEDLINE | ID: covidwho-2268786

ABSTRACT

Coronaviruses (CoVs) continuously evolve, crossing species barriers and spreading across host ranges. Over the last two decades, several CoVs (HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2) have emerged in animals and mammals, causing significant economic and human life losses. Due to CoV cross-species transmission and the evolution of novel viruses, it is critical to identify their natural reservoiurs and the circumstances under which their transmission occurs. In this review, we use genetic and ecological data to disentangle the evolution of various CoVs in wildlife, humans, and domestic mammals. We thoroughly investigate several host species and outline the epidemiology of CoVs toward specific hosts. We also discuss the cross-species transmission of CoVs at the interface of wildlife, animals, and humans. Clarifying the epidemiology and diversity of species reservoirs will significantly impact our ability to respond to the future emergence of CoVs in humans and domestic animals.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , SARS-CoV-2/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Host Specificity , Animals, Wild , Mammals
17.
ACS Chem Biol ; 18(3): 583-594, 2023 03 17.
Article in English | MEDLINE | ID: covidwho-2277281

ABSTRACT

Biomolecular condensates formed by liquid-liquid phase separation have been implicated in multiple diseases. Modulation of condensate dynamics by small molecules has therapeutic potential, but so far, few condensate modulators have been disclosed. The SARS-CoV-2 nucleocapsid (N) protein forms phase-separated condensates that are hypothesized to play critical roles in viral replication, transcription, and packaging, suggesting that N condensation modulators might have anti-coronavirus activity across multiple strains and species. Here, we show that N proteins from all seven human coronaviruses (HCoVs) vary in their tendency to undergo phase separation when expressed in human lung epithelial cells. We developed a cell-based high-content screening platform and identified small molecules that both promote and inhibit condensation of SARS-CoV-2 N. Interestingly, these host-targeted small molecules exhibited condensate-modulatory effects across all HCoV Ns. Some have also been reported to exhibit antiviral activity against SARS-CoV-2, HCoV-OC43, and HCoV-229E viral infections in cell culture. Our work reveals that the assembly dynamics of N condensates can be regulated by small molecules with therapeutic potential. Our approach allows for screening based on viral genome sequences alone and might enable rapid paths to drug discovery with value for confronting future pandemics.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Coronavirus OC43, Human , Humans , SARS-CoV-2 , Nucleocapsid Proteins
18.
Proc Natl Acad Sci U S A ; 120(15): e2218083120, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2275172

ABSTRACT

The nasal epithelium is the initial entry portal and primary barrier to infection by all human coronaviruses (HCoVs). We utilize primary human nasal epithelial cells grown at air-liquid interface, which recapitulate the heterogeneous cellular population as well as mucociliary clearance functions of the in vivo nasal epithelium, to compare lethal [Severe acute respiratory syndrome (SARS)-CoV-2 and Middle East respiratory syndrome-CoV (MERS-CoV)] and seasonal (HCoV-NL63 and HCoV-229E) HCoVs. All four HCoVs replicate productively in nasal cultures, though replication is differentially modulated by temperature. Infections conducted at 33 °C vs. 37 °C (reflective of temperatures in the upper and lower airway, respectively) revealed that replication of both seasonal HCoVs (HCoV-NL63 and -229E) is significantly attenuated at 37 °C. In contrast, SARS-CoV-2 and MERS-CoV replicate at both temperatures, though SARS-CoV-2 replication is enhanced at 33 °C late in infection. These HCoVs also diverge significantly in terms of cytotoxicity induced following infection, as the seasonal HCoVs as well as SARS-CoV-2 cause cellular cytotoxicity as well as epithelial barrier disruption, while MERS-CoV does not. Treatment of nasal cultures with type 2 cytokine IL-13 to mimic asthmatic airways differentially impacts HCoV receptor availability as well as replication. MERS-CoV receptor DPP4 expression increases with IL-13 treatment, whereas ACE2, the receptor used by SARS-CoV-2 and HCoV-NL63, is down-regulated. IL-13 treatment enhances MERS-CoV and HCoV-229E replication but reduces that of SARS-CoV-2 and HCoV-NL63, reflecting the impact of IL-13 on HCoV receptor availability. This study highlights diversity among HCoVs during infection of the nasal epithelium, which is likely to influence downstream infection outcomes such as disease severity and transmissibility.


Subject(s)
COVID-19 , Coronaviridae , Coronavirus 229E, Human , Humans , Interleukin-13/metabolism , Seasons , SARS-CoV-2 , Epithelial Cells
19.
Antimicrob Agents Chemother ; 67(4): e0170322, 2023 04 18.
Article in English | MEDLINE | ID: covidwho-2256542

ABSTRACT

Antiviral compounds targeting cellular metabolism are part of the therapeutic arsenal to control the spread of virus infection, either as sole treatment or in combination with direct-acting antivirals (DAA) or vaccines. Here, we describe the effect of two of them, lauryl gallate (LG) and valproic acid (VPA) both exhibiting a wide antiviral spectrum, against infection by coronaviruses such as HCoV-229E, HCoV-OC43, and SARS-CoV-2. A consistent 2 to 4-log-decrease in virus yields was observed in the presence of each antiviral, with an average IC50 value of 1.6 µM for LG and 7.2 mM for VPA. Similar levels of inhibition were observed when adding the drug 1 h before adsorption, at the time of infection or 2 h after infection, supporting a postvirus entry mechanism of action. The specificity of the antiviral effect of LG against SARS-CoV-2, relative to other related compounds such as gallic acid (G) and epicatechin gallate (ECG), predicted to be better inhibitors according to in silico studies, was also demonstrated. The combined addition of LG, VPA, and remdesivir (RDV), a DAA with a proven effect against human coronaviruses, resulted in a robust synergistic effect between LG and VPA, and to a lesser extent between the other drug combinations. These findings reinforce the interest of these wide antiviral spectrum host-targeted compounds as a first line of defense against viral diseases or as a vaccine complement to minimize the gap in antibody-mediated protection evoked by vaccines, either in the case of SARS-CoV-2 or for other possible emerging viruses.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Coronavirus OC43, Human , Hepatitis C, Chronic , Humans , Antiviral Agents/pharmacology , SARS-CoV-2
20.
PLoS Pathog ; 19(3): e1011240, 2023 03.
Article in English | MEDLINE | ID: covidwho-2269790

ABSTRACT

One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Natural Killer T-Cells , Humans , Animals , Mice , Immune Evasion , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL